Meniscal lesion detection and characterization in adult knee MRI: A deep learning model approach with external validation

نویسندگان

چکیده

PurposeEvaluation of a deep learning approach for the detection meniscal tears and their characterization (presence/absence migrated fragment).MethodsA large annotated adult knee MRI database was built combining medical expertise radiologists data scientists’ tools. Coronal sagittal proton density fat suppressed-weighted images 11,353 examinations (10,401 individual patients) paired with standardized structured reports were retrospectively collected. After curation, models trained validated on subset 8058 examinations. Algorithm performance evaluated test set 299 reviewed by 5 musculoskeletal specialists compared to general radiologists’ reports. External validation performed using publicly available MRNet database. Receiver Operating Characteristic (ROC) curves results Area Under Curve (AUC) values obtained internal external databases.ResultsA combined architecture localization lesion classification 3D convolutional neural networks reached AUC 0.93 (95% CI 0.82, 0.95) medial 0.84 0.78, 0.89) lateral tear detection, 0.91 0.87, 0.94) 0.95 0.92, 0.97) migration detection. resulted in an 0.83 0.75, 0.90) without further training 0.89 fine tuning.ConclusionOur algorithm demonstrated high menisci characterization,

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Melanoma detection with a deep learning model

Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions.    Methods: In this analytic s...

متن کامل

Retinal Lesion Detection With Deep Learning Using Image Patches

Purpose To develop an automated method of localizing and discerning multiple types of findings in retinal images using a limited set of training data without hard-coded feature extraction as a step toward generalizing these methods to rare disease detection in which a limited number of training data are available. Methods Two ophthalmologists verified 243 retinal images, labeling important su...

متن کامل

Deep Reinforcement Learning for Active Breast Lesion Detection from DCE-MRI

We present a novel methodology for the automated detection of breast lesions from dynamic contrast-enhanced magnetic resonance volumes (DCE-MRI). Our method, based on deep reinforcement learning, significantly reduces the inference time for lesion detection compared to an exhaustive search, while retaining state-of-art accuracy. This speed-up is achieved via an attention mechanism that progress...

متن کامل

Knee MRI: Meniscal Tears and Postoperative Cartilage Imaging

Currently magnetic resonance (MR) is the modality of choice for assessing the meniscus with reported accuracies, sensitivities, and specificities ranging between 85% to 95% in detecting meniscal tears. Once a tear is identified, it is imperative not only to localize the tear, but to describe the tear pattern, extent, and any associated chondrosis to guide treatment options for the referring phy...

متن کامل

validation of a revised logical-mathematical intelligence scale and exploring its relationship with english language proficiency

نظریه هوش چندگانه قسمتهای متفاوت هوش بشری را مورد بررسی قرار می دهد که با شناخت آن شخص به درک بهتری از توانایی های خود میرسد و در نتیجه سعی در استفاده از آن جهت یادگیری بهتر میکند. همچنین با شناخت استعداد دانش آموزان، فرایند یادگیری بهتر میشود. هدف از انجام دادن این تحقیق بررسی رابطه بین هوش ریاضی و استعداد یادگیری زبان انگلیسی میباشد. برای انجام این تحقیق از پرسشنامه هوش ریاضی که توسط شیرر در ...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physica Medica

سال: 2021

ISSN: ['1724-191X', '1120-1797']

DOI: https://doi.org/10.1016/j.ejmp.2021.02.010